decodificando o of 1

Desenvolvedora de Software (Plataformatec)

Mestrado em Ciéncia da Computacdo (USP)

y twitter.com/elaine_nw

&) speakerdeck.com/elainenaomi

careers.plataformatec.com.br

£

ectativas:

(>

discutir os desafios e praticas da
revisao de codigo

processo de verificacao de um sistema por meio da
andlise do cdédigo fonte, realizada por humanos

https://en.wikipedia.org/wiki/Code_review

4 3. "’):? a
qual é o abje

software

SOFTWARE MANANGEMENT

Defect Reduction

Top 10 List

Barry Boehm, University of Southern California
Victor R. Basili, University of Maryland

n ecently, a National Science
Foundation grant enabled us to

insight has been a major driver in focus-
ing industrial software practice on thor-

TWO

Current software projects spend about
40to 50 percent of their effort on avoid-
able rework.

Such rework consists of effort spent
fixing software difficulties that could
have been discovered earlier and fixed
less expensively or avoided altogether. By
implication, then, some effort must con-
sist of “unavoidable rework,” an obser-
vation that has gained increasing
credibility with the growing realization
that better user-interactive systems result
from emergent processes. In such
processes, the requirements emerge from
prototyping and other multistakeholder-
shared learning activities, a departure
from traditional reductionist processes
that stipulate requirements in advance,
then reduce them to practice via design
and coding. Emergent processes indicate

0% dos defeitos podem ser
identificados na revisao do codigo

Boehm, Barry, and Victor R. Basili. "Top 10 list [software development]."
Computer 34.1 (2001): 135-137

430 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO. 3, MAY/JUNE 2009

What Types of Defects Are Really Discovered
in Code Reviews?

Mika V. Mantyla and Casper Lassenius, Member, IEEE

Abstract—Research on code reviews has often focused on defect counts instead of defect types, which offers an imperfect view of
code review benefits. In this paper, we classified the defects of nine industrial (C/C++) and 23 student (Java) code reviews, detecting
388 and 371 defects, respectively. First, we discovered that 75 percent of defects found during the review do not affect the visible
functionality of the software. Instead, these defects improved software evolvability by making it easier to understand and modify.
Second, we created a defect classification consisting of functional and evolvability defects. The evolvability defect classification is
based on the defect types found in this study, but, for the functional defects, we studied and compared existing functional defect
classifications. The classification can be useful for assigning code review roles, creating checklists, assessing software evolvability,
and building software engineering tools. We conclude that, in addition to functional defects, code reviews find many evolvability defects
and, thus, offer additional benefits over execution-based quality assurance methods that cannot detect evolvability defects. We
suggest that code reviews may be most valuable for software products with long life cycles as the value of discovering evolvability
defects in them is greater than for short life cycle systems.

Index Terms—Code inspections and walkthroughs, enhancement, extensibility, maintainability, restructuring.

%

Revisao de codigo é uma boa ferramenta para
identificar defeitos relacionados a evelutibilidade do
codigo que nao sao identificaveis na fase de testes

Mantyla, Mika V., and Casper Lassenius. "What types of defects are really discovered in code
reviews?." [EEE Transactions on Software Engineering 35.3 (2009): 430-448

Custo da mudanca

How to Monetize Application Technical Debt, Gartner, 2011

Divida Técnica

Valor de negocio

tempo

custo da mudanca

http://agilemodeling.com/essays/modelReviews.htm

Requisitos

Analise e

. Desenv. Revisao Testes Producgao
Design

tempo

)

custo da mudanca

http://agilemodeling.com/essays/modelReviews.htm

Requisitos

Analise e

. Desenv.. Revisao . Testes Producgao
Design

tempo

)

v Confiabilidade
v Corretude

v Eficiéncia
v Manutenabilidade

v Valor de negécio

https://en.wikipedia.org/wiki/Software_quality

> &R ==
4 Z

105

T
s
W)
@

;4
s
A

ki I Tocherueichi v Arciives - VWibtog Tools ©oection ' toehciunch o oy
COTeE e e

v Pair Programming

v Pull Request

v Pair Programming

v Pull Request

Fonte: https://mtlynch.io/human-code-reviews-2/

> &R ==
4 Z

v Pair Programming

v Pull Request

codigo + contexto de negocio

v Pair Programming

v Pull Request

historico acessivel das discussoes

Mesmo tempo Tempo diferente

Locais interacao interacao
diferentes sincrona assincrona
distribuida distribuida

Mesmo interacao interacao
local face-a-face assincrona

Johansen, Robert. "Groupware: Future directions and wild cards.”
Journal of Organizational Computing and Electronic Commerce 1.2 (1991): 219-227.

[pt] Fix a Portuguese typo in the "basic/control- Edit
structures.md’ '

VG-l anderkonzen merged 2 commits into elixirschool:master from elainenaomi:ew-pt-fix-typo E¢ on May 24

;5¥ Conversation 1 -O- Commits 2 #/ Checks 0 Files changed 1 +2 -2 HIEENE

elainenaomi commented on May 24 Contributor | +(%) -+ Reviewers

@ anderkonzen v
Hi, everyone! It's my first contribution. ﬂthiamsantos o
It's just a minor typo fixing.
I'm considering the spelling in pt-BR, in which, the word encadiar is a typo (the correct spelling is Assignees
encadear). I'm not sure if this word is correct in other variants from Portuguese. No one assigned
Thanks for your attention.

Labels

translation

i elainenaomi added some commits on May 24

revisdo por meio de comentarios

ﬂ ° thiamsantos approved these changes on May 24

© @ anderkonzen added the 'translation label on May 24

0 anderkonzen approved these changes on May 24

anderkonzen left a comment

Thank you very much @elainenaomi ! & &
Any improvements, small or big, make the difference!

Q [@ anderkonzen merged commit 01e84a2 into elixirschool:master
on May 24

1 check passed

View changes

View changes

Member

View details

+© —

Revert

No milestone

Notifications Customize

4x Unsubscribe

You're receiving notifications
because you were mentioned.

3 participants

(") Allow edits from maintainers.

Learn more

transferéncia de conhecimento

a
mentoria

visibilidade das alteracdes
para outros times

tearm awareness

praticas

28504 aAlllora

Titulo explicativo

Motivacdo (contexto de negdcio)
Lista de duvidas e discussdes previas

Gifs, screenshots das alteracoes

3§

Mensagens de commits coerentes
Cdodigo completo, testado

AlteracOes pequenas

Single responsibili

v Marcar pessoas como revisoras

v Aplicar as alteracbes necessarias

er a todos os comentarios

(o

> &R ==
4 Z

e
S
@
%
>.

O

ldentificar defeitos (bugs)
Sugerir solucfes alternativas, refatoracoes

Reforcar padrfes de codigo e design

:

Validar funcionalidade (cédige + negdcio)

Q

ldentificar problemas de seguranca
Analisar impactos na performance

Sugerir documentacoes

baigo-Tonte

Q

Validar a @

v Conhecer novas funcionalidades
v Aprender novas tecnologias

v Compartilhar conhecimento e duvidas

(o

> &R ==
4 Z

ticas @

D a

Fonte: https://mtlynch.io/human-code-reviews-1/

2018 ACM/IEEE 40th International Conference on Software Engineering: Software Engineering in Practice

Modern Code Review: A Case Study at Google

Caitlin Sadowski, Emma Soderberg,

Luke Church, Michal Sipko
Google, Inc.

{supertri,emso,lukechurch,sipkom}@google.com

ABSTRACT

Employing lightweight, tool-based code review of code changes
(aka modern code review) has become the norm for a wide
variety of open-source and industrial systems. In this pa-
per, we make an exploratory investigation of modern code
review at Google. Google introduced code review early on
and evolved it over the years; our study sheds light on why
Google introduced this practice and analyzes its current
status, after the process has been refined through decades of
code changes and millions of code reviews. By means of 12
interviews, a survey with 44 respondents, and the analysis
of review logs for 9 million reviewed changes, we investigate
motivations behind code review at Google, current practices,
and developers’ satisfaction and challenges.

Alberto Bacchelli

University of Zurich
bacchelli@ifi.uzh.ch

An open research challenge is understanding which prac-
tices represent valuable and effective methods of review in this
novel context. Rigby and Bird quantitatively analyzed code
review data from software projects spanning varying domains
as well as organizations and found five strongly convergent
aspects [33], which they conjectured can be prescriptive to
other projects. The analysis of Rigby and Bird is based on the
value of a broad perspective (that analyzes multiple projects
from different contexts). For the development of an empirical
body of knowledge, championed by Basili [7], it is essential
to also consider a focused and longitudinal perspective that
analyzes a single case. This paper expands on work b
and Bird to focus on the review practices and charac
established at Google, i.e., a company with a multi
history of code review and a high-volume of daily re

0% das alteracdes do Google
sao integradas em menos de 24h
apos o pedido de review

Sadowski, Caitlin, et al. "Modern code review: a case study at Google." Proceedings of the 40th International
Conference on Software Engineering: Software Engineering in Practice. ACM, 2018

AlteracOes pequenas, uma pessoa
revisora e sem comentarios aléem de
autorizacao para integracao

Sadowski, Caitlin, et al. "Modern code review: a case study at Google." Proceedings of the 40th International
Conference on Software Engineering: Software Engineering in Practice. ACM, 2018

magica?

alinhamento

Sua base de codigo parece ter sido

«
° B 2 o 5 P = P T TP = p
r] BREBG A Dk & W,
Z E 4 ZZ Z Vo R/ ¥ oo °

SIM NAO

Fonte: Talking with Tech Leads - Patrick Kua

https://martinfowler.com/bliki/CodeOwnership.html

Fonte: https://mtlynch.io/human-code-reviews-2/

REVIEW
_ TENSION

guem faz review, faz parte da
construcao da solucao também

> &R ==
4 Z

> &R ==
4 Z

lembre-se que o feedback

deve ser sobre © coTigo,
e Ndo sobre as pessoas

ninguem acorda e pensa:
vou la adicionar um bug e ja volto

> &R ==
4 Z

apoie a participacao de
do seu time

nao € porque alguém e experiente,
gue nao vai errar

nao € porque alguem € iniciante,
que nao vai ter contribuicao

> &R ==
4 Z

mentarios
explicitos e descritivos

(0]

10

Bundle edge Rails instead: gem 'rails', github:
+gem 'rails', '~> 5.1.6'

H random-person-123 just now

R
H Reply...

'rails/rails'

Bundle edge Rails instead: gem 'rails', github: 'rails/rails'
10 +gem 'rails', '~> 5.1.6'

H random-person-123 just now

R
H Reply...

€ para eu jogar fora a minha alteragao?

o
S

Bundle edge Rails instead: gem 'rails', github: 'rails/rails'
10 +gem 'rails', '~> 5.1.6'

H random-person-123 just now

R
H Reply...

ah, erasé Para apagar o espaco extra_w

&

> &R ==
4 Z

comentarios repetitivos
sobre estilo de codigo

podem ser substituidos por uma
ferramenta de analise de cddigo

%

N\
CODESHIP SonarQUbe\\\

= A
*Reek & RuboCop

2:SourcelLevel

2-SourcelLevel

CODIGO: ELAINE
50% por 6 meses

> &R ==
4 Z

melhorias de design podem ser
entregues em outro pull request

> &R ==
4 Z

se chegar a uma conclusao
estiver dificil

nao se limite a ferramenta de review

v videoconferéncia

v presencialmente

http://blog.plataformatec.com.br/2018/11/trabalhando-com-times-distribuidos/

locumente as decisoes e
discussdes offline

(R
&)

> &R ==
4 Z

preste atencao na sua
forma de se comunicar

muitas vezes nao e obvio que um
comentario ou comportamento é
prejudicial

9444
07774

> &R ==
4 Z

22

N

> &R ==
4 Z

tenha critérios bem definidos
eX.. 0 numero minimo de aprovacoes

> &R ==
4 Z

fator social

Influence of Social and Technical Factors for Evaluating
Contribution in GitHub

Jason Tsay, Laura Dabbish, James Herbsleb
School of Computer Science and Center for the Future of Work, Heinz College
Carnegie Mellon University
5000 Forbes Ave., Pittsburgh, PA 15213 USA
{itsay, dabbish, jdh}@cs.cmu.edu

ABSTRACT

Open source software is commonly portrayed as a meritocracy,
where decisions are based solely on their technical merit.
However, literature on open source suggests a complex social
structure underlying the meritocracy. Social work environments
such as GitHub make the relatipnships between users and
between users and work artifacts transparent. This transparency
enables developers to better use information such as technical
value and social connections when making work decisions. We
present a study on open source software contribution in GitHub
that focuses on the task of evaluating pull requests, which are one
of the primary methods for contributing code in GitHub. We
analyzed the association of various technical and social measures
with the likelihood of contribution acceptance. We found that
project managers made use of information signaling both good
technical contribution practices for a pull request and the strength
of the social connection between the submitter and project
manager when evaluating pull requests. Pull requests with many

PR Ae— | W - L TGN, SESET——— . [| -

Foundation [10], Apache Software Foundation [14], and Mozilla
Foundation [21] officially describe themselves as meritocracies.
For example, in the case of Mozilla, “authority is distributed to
both volunteer and employed community members as they show
their abilities through contributions to the project” [21]. These
“abilities” are generally assumed to be technical expertise
brought to the software project by various developers.

Previous studies on open source software suggest that there are
many more factors that influence contribution evaluation beyond
technical merit. In fact, prior work suggests that there exists a
complex social structure around contribution in open source
software [8]. New contributors to traditional open source projects
are expected to “lurk” or monitor project mailing lists before
even attempting contributions. These projects have complex
socialization processes that need to be undertaken before
accepting technical contributions [17].

With the advent of social media and distributed version control
systems, many open source software projects operate with an

Quando os testes estao incluso, o PR
tem 17% mais chance de ser aceito

fator técnico

Tsay, Jason, Laura Dabbish, and James Herbsleb. "Influence of social and technical factors for evaluating contribution in GitHub.”
Proceedings of the 36th international conference on Software engineering. ACM, 2014.

Se a pessoa autora segue a pessoa
responsavel pelo projeto, tem

7% mais chance do PR ser aceito

fator social

18

Tsay, Jason, Laura Dabbish, and James Herbsleb. "Influence of social and technical factors for evaluating contribution in GitHub.”
Proceedings of the 36th international conference on Software engineering. ACM, 2014.

> &R ==
4 Z

formalize as recomendacoes,
crie guidelines sobre

aspectos comporiamentals

comunicagao
verbal, nao verbal e escrita

DON'T WALK
BACKWARDS

g

UNMARKED HOLES

1 &858 49 &5 W BJR T " WmT 9w !

com porta mentos
toXicos

N 7
- a J
Pl

Impedem inovacgdes e ideias

Promovem a cultura da nao-comunicagao
Colocam o projeto e negocio em risco por centralizar informacao

Comunicagao agressiva (verbal, ndo-verbal e escrita)

https://medium.com/@jgefroh/toxic-developers-considered-harmful-f7ea1494d4c0

"cOmMO assim vocé nao sabe isso0???"

"'como deixaram voceé entrar aqui??”

"vou ter que te explicar de novo?”

A analise de sentimento em comentarios
tem mostrado evidéncias de que
comentarios com tom negativo
tendem a ser menos uteis

Sadowski, Caitlin, et al. "Modern code review: a case study at Google." Proceedings of the 40th International
Conference on Software Engineering: Software Engineering in Practice. ACM, 2018

COMOo evitar ISso?

| . — \
0

&

Faca reviews como seres humanos

How to Do Code Reviews Like a Human (Part One)
October 12, 2017

®© 19 minute read

Lately, I've been reading articles about best practices for code reviews. | notice that these articles focus
on finding bugs to the exclusion of almost every other component of a review. Communicating issues
you discover in a constructive and professional way? Irrelevant! Just identify all the bugs, and the rest
will take care of itself.

So | had a revelation: if this works for code, why not romance? With that, I'm announcing my new ebook
to help developers with their love lives:

https://mtlynch.io/human-code-reviews-1/
https://mtlynch.io/human-code-reviews-2/

ask, don't tell

ok, € sO perguntar

ok, € sO perguntar

~~
0

—

2

"Testes nao sao importantes pra vc?"

pergunta sarcastica, com julgamento pessoal

"Testes nao sao importantes pra vc?"

pergunta sarcastica, com julgamento pessoal x

"Esse PR nao pode ser mergeado”

comentario opinativo, sem ac¢do concreta, imperativo

"Esse PR nao pode ser mergeado”

comentario opinativo, sem ac¢do concreta, imperativo x

"Por que nao criou uma nova classe?"

pergunta com julgamento pessoal ainda
"como vocé nao pensou nisso?"

"Por que nao criou uma nova classe?"

pergunta com julgamento pessoal ainda x
"como vocé nao pensou nisso?"

busque comentar
de maneira construtiva

"O gue vocé acha sobre extrair essa
|Ogica para uma classe? Acredito que
vai melhorar a legibilidade e reduzir a

complexidade"
construtivo

"Nao sei se vocé ja analisou isso,
mas sera que nao vale a pena criar
uma nova classe para esse caso?"

sem suposicao, tom de sugestao .7

> &R ==
4 Z

desenvolvimento de software tem
muito a ver com ciltura

"A cultura nao faz as pessoas,
as pessoas fazem a cultura”

Chimamanda Ngozi Adichie

olhe para o seu time

diversidade ajuda a estimular empatia

pode ajudar a reduzir
comportamentos toxicos

e impactar positivamente
na inovacao e lucro

Diversidade de género:

21% mais chances de resultados
acima da média do mercado

Diversidade cultural e étnica:

33% mais chances de resultados
acima da média do mercado

https://assets.mckinsey.com/~/media/857F440109AA4D13A54D9C496D86ED58.ashx

olhe também para o ambiente

fatores nao~-técnicos

pressao, sobrecarga de atividades,
experiéncia e contexto de negocio

Baysal, Olga, et al. "The influence of non-technical factors on code review." 2013 20th Working
Conference on Reverse Engineering (WCRE). IEEE, 2013.

a qualidade do software
reflete todos esses fatores

impacta também no cddigo escrito

codigo escrito € uma
forma de comunicacaoc

"Instead of imagining that our main
task is to instruct a computer what
to do, let us concentrate rather on

slaining to human beings what we want a

e

=

computer to do."

Donald Knuth. "Literate Programming (1984)" in Literate Programming. CSLI, 1992, pg. 99.

e Feview é sobre cultura,
pessoas, qualidade de software

Nno seu dia a dia?

minhas referéncias

FOCUS: PROCESS IMPROVEMENT

Code Reviewing
in the Trenches

Challenges and Best
Practices

Laura MacLeod and Michaela Greiler, Microsoft
Margaret-Anne Storey, University of Victoria
Christian Bird, Microsoft Research

Jacek Czerwonka, Microsoft

A larcoe-crale atiidy of Microoenft develoneare

developers’ code review practices
to summarize the challenges that
code-change authors and reviewers
face, suggest best code-reviewing
practices, and discuss tradeoffs that
practitioners should consider.

To understand code review processes,
researchers generally focus on a retro-
spective analysis of code review trace
data (for example, from CodeFlow,!
GitHub pull requests,? and emails?).
In addition, some researchers have
conducted interviews or surveys2:* to
reveal the motivations for and chal-
lenges of code review. For example,
Alberto Bacchelli and Christian Bird
interviewed developers while they
performed code reviews.!

To gain a more in-depth under-
standing of the human and social fac-
tors that drive code review in a large

Saacleatp sl A HESEE e S . Srvactiaatar)

2018 ACM/IEEE 40th International Conference on Software Engineering: Software Engineering in Practice

Modern Code Review: A Case Study at Google

Caitlin Sadowski, Emma Séderberg,

Luke Church, Michal Sipko
Google, Inc.
{supertri,emso,lukechurch,sipkom}@google.com

ABSTRACT

Employing lightweight, tool-based code review of code changes
(aka modern code review) has become the norm for a wide
variety of open-source and industrial systems. In this pa-
per, we make an exploratory investigation of modern code
review at Google. Google introduced code review early on
and evolved it over the years; our study sheds light on why
Google introduced this practice and analyzes its current
status, after the process has been refined through decades of
code changes and millions of code reviews. By means of 12
interviews, a survey with 44 respondents, and the analysis
of review logs for 9 million reviewed changes, we investigate
motivations behind code review at Google, current practices,
and developers’ satisfaction and challenges.

CCS CONCEPTS

« Software and its engineering — Software maintenance tools;

Alberto Bacchelli
University of Zurich
bacchelli@ifi.uzh.ch

An open research challenge is understanding which prac-
tices represent valuable and effective methods of review in this
novel context. Rigby and Bird quantitatively analyzed code
review data from software projects spanning varying domains
as well as organizations and found five strongly convergent
aspects [33], which they conjectured can be prescriptive to
other projects. The analysis of Rigby and Bird is based on the
value of a broad perspective (that analyzes multiple projects
from different contexts). For the development of an empirical
body of knowledge, championed by Basili [7], it is essential
to also consider a focused and longitudinal perspective that
analyzes a single case. This paper expands on work by Rigby
and Bird to focus on the review practices and characteristics
established at Google, i.e., a company with a multi-decade
history of code review and a high-volume of daily reviews to
learn from. This paper can be (1) prescriptive to practitioners
performing code review and (2) compelling for researchers
who want to understand and support this novel process.

PRACTICAL

OBJECT-ORIENTED
DESIGN

AN AGILE PRIMER UsING RuBY

SECOND EODITION

SANDI METZ

Martin Fowler

witlh ¢ s by
Kent Beck

SECOND EDITION

Clean Code

A Handbook of Agile Software Craftsmanship

iﬂl]l"l[SOFTHA
NEVELOPMET

I’nnuplu P lft(lll\ and 1)r(l([l((.\

. HALL
H [Robert C. Martin Series

A et ot £ B & s by s . Cople Robert ¢ Martin

COMUNICACAO
NAO-VIOLENTA

Marshall B. Rosenberg

NEW YORK TIMES BESTSELLER

apIcAL
IEANPW

“RADKAL CANDIR
Wit HELP Jou INSPIRE
TeAns To DO THE PEST
VORK OF THEIR LIVES,”

—SHERTL
SANDBERG

CHIMAMANDA
NGOZIADICHIE BAPIDO

: DEVAGAR
DUAS FORMAS DE PENSAR

SEIANOS

000 ' [N—
EEMINISTAS "\ DANIEL

PREMIO NOBEL DE ECONOMIA

IIIIIIII

BASED ON THE NEW YORK TIMES BESTSELLER,
THE FIVE DYSFUNCTIONS OF A TEAM

The FIVE
DYSFUNCTIONS

ofa TEAM

TEAM ASSESSMENT

PATRICK LENCIONI

AUTHOR OF SILOS, POLITICS, AND TURF WARS

“Pfeiffer

grammers

Driving Technical Change

‘Why People On Your Team Don't Act on Good Ideas,
and How To Convince Them They Should

Terrence Ryan
Edited by Jacquelyn Carter

2017 IEEE/ACM 39th International Conference on Software Engineering

Decoding the representation of code in the brain:
An fMRI study of code review and expertise

Benjamin Floyd
University of Virginia
bef2cj@virginia.edu

Abstract—Subjective judgments in software engineering tasks
are of critical importance but can be difficult to study with con-
ventional means. Medical imaging techniques hold the promise
of relating cognition fo physical activities and brain structures.
In a controlled experiment involving 29 participants, we exam-
ine code comprehension, code review and prose review using
functional magnetic resonance imaging. We find that the neural
representations of programming languages vs. natural languages
are distinct. We can classify which task a participant is under-
taking based solely on brain activity (balanced accuracy 79%,
p < 0.001). Further, we find that the same set of brain regions
distinguish between code and prose (near-perfect correlation,
r = 0.99, p < 0.001). Finally, we find that task distinctions
are modulated by expertise, such that greater skill predicts a
less differentiated neural representation (r = —0.44, p = 0.016)
indicating that more skilled participants treat code and prose
more similarly at a neural activation level.

Keywords-medical imaging; code comprehension; prose review

I. INTRODUCTION

Tyler Santander
University of Virginia
ts7ar@virginia.edu

Westley Weimer
University of Virginia
weimer @virginia.edu

among both clinical and psychological researchers. Unlike
other cognitive neuroscience methods (e.g., EEG or PET),
fMRI allows for rapid sampling of neural signal across the
whole brain (1-2 seconds) and offers high spatial resolution
(scale of millimeters) with regard to localizing signal sources.
Thus, fMRI arguably provides the best available measure of
online neural activity in the living, working human brain.
We present an fMRI study of software engineering activities.
We focus on understanding code review, its relationship to
natural language, and expertise. We note that the use of
fMRI in software engineering is still exploratory; to the
best of our knowledge this is only the second paper to do
so [70], and is the first to consider code review and expertise.
We explore these tasks because developers spend more time
understanding code than any other activity [18], [29], [59],
[62]. A NASA survey, for example, ranked understanding
as more important than functional correctness when making
use of software [53]. Similarly, with companies such as
Facebook [77] and Google [36] mandating code review for

< < < < < <

guidelines.plataformatec.com.br
github.blog/2015-01-21-how-to-write-the-perfect-pull-request
medium.com/palantir/19e0278001 5f

medium.com/@jgefroh/f7ea1494d4c0

forbes.com/sites/quora/2014/11/07/10-characteristics-of-a-bad-softwar
e-engineer

blog.plataformatec.com.br/2018/07/como-evitar-silos-de-conhecimento-
na-sua-codebase-e-levar-seus-code-reviews-para-o-proximo-nivel/

Building an Iconic Company - Reed Hasting
youtube.com/watch?v=BsXXIfgbnRk

A Arquitetura (Peculiar) do Stack Overflow - Roberta Arcoverde
infoq.com/br/presentations/a-arquitetura-peculiar-do-stack-overflow

Arquitetura, pragmatismo e simplicidade - Roberta Arcoverde
docs.google.com/presentation/d/1DMpfVcXtALeCPWQWTMONz-YE1D
Bz7hCvPMf8q6010gl/preview

Talking with Tech Leads - Patrick Kua
youtube.com/watch?v=dNE6aqkG7ss

Implementing a Strong Code-Review Culture - Derek Prior
youtube.com/watch?v=PJjmw9TRB7s

Maintaining a big open source project: lessons learned - Leonardo Tegon
youtube.com/watch?v=rnOcDH_sgxg

Integracao Discreta: como melhorar a Integragao Continua e ainda
ganhar em colaboracao - George Guimaraes
infoq.com/br/presentations/integracao-discreta-como-melhorar

https://railsconf.com/program/sessions#session-757

Roberta Arcoverde R4
@rlad

Num ambiente de entrega continua, diante de erros bestas
(typos, por ex), vocé/seu time seguem o processo de
mudang¢a com branch/PR/code review, ou pulam
alguma/todas essas etapas? Vai direto pra master? Pula sé
o code review? Thoughts?

Translate Tweet
714 PM - Feb 19, 2019 - Twitter Web Client

https://twitter.com/rla4/status/1097982806163185666

https://twitter.com/rla4/status/1097982806163185666

MUITO OBRIGADA

speakerdeck.com/elainenaomi

CODIGO: ELAINE
50% por 6 meses

2-SourcelLevel

